Corves, sursuces up to Gauss
(1) Ernishling twoning tongects them:
(1)

$$
\begin{aligned}
& \text { (2) } 2 \theta=u^{2 \theta}+2 \int(-n \\
& \Rightarrow \text { degree }=\# \text { \& arerucages. } \\
& \text { wh sign. } \\
& \text { (Also (istling piduve) }
\end{aligned}
$$

Q: When ore two, corves $k, \beta: I \rightarrow \mathbb{R}^{3}$ the same up to rigid motions?
A: Use an cirpave without Yaw

Minor teduricality: If pitch $=0$, roll doesn't chouge path. Singlect sol'm: Assulve pitdr $\neq 0$; whog pitch >0.

Frenet Frame (1847)
If $\alpha: I \rightarrow \mathbb{R}^{3}$ is a curve (paroun by arclengtu), doine $t(s)=\alpha^{\prime}(s) \quad$ tongent
$x(s)=\left|t^{\prime}(s)\right|=\left|\alpha^{\prime \prime}(s)\right| \quad$ curvature (conpare sighed corv)
Acsumning $k \neq 0$, doine

$$
\begin{array}{lll}
n(s)=\frac{\alpha^{\prime \prime}(s)}{k(s)} & \text { vormal } & \text { (check } n \perp t) \\
b(s)=t \sim n & \text { binormal } & \text { (cooss pvoduct) }
\end{array}
$$

$F=[t \sim b \quad b]$ is the Frenet frame of α Pres $\operatorname{sean}(0, n)$ is the oscullating plove.

Con thiute of $F: I \rightarrow S O(3) \quad F^{2} F=i d$.
Wrise $F^{\prime}=\frac{d F}{d t} \in T_{F} \operatorname{sol}(3)$

$$
\left(F^{\top}\right)^{\prime} F+F^{\top} F^{\prime}=0 \quad \Longleftrightarrow \quad\left(F^{-1} F^{\prime}\right)^{\top}+F^{-1} F^{\top}=0
$$

$\Leftrightarrow F^{-1} F^{\prime}$ is stece-symuntric

Tecall Lie algelara of so(3) $\rightsquigarrow T_{e}$ so(3) $=$ stew-sym
\rightarrow leftinut veter Ricles
$\Rightarrow \exists_{\text {cononical ung }} L_{F^{-i}}: T_{F} S O(3) \rightarrow T_{e} S O(3)$
for untrices $d L_{F^{-1}}\left(F^{\prime}\right)=\frac{F^{-1} F^{\prime}}{\text { as unctives }} \leadsto F^{-1} d E$ Mawr- $_{\text {Corta }}^{\text {Maw }}$ Corton forn.
$F^{-1} F^{\prime}:$

$$
\left[\begin{array}{lll}
t & n & b
\end{array}\right]^{\prime}=\left[\begin{array}{lll}
t & n & b
\end{array}\right]\left[\begin{array}{ccc}
0 & -x & -y \\
x & 0 & -z \\
y & z & 0
\end{array}\right]
$$

Since the Frenet Frame is orthonormal, $F^{\top} F=I$,
$F^{-1} F^{\prime}$ is shew-sgmentric

$$
\Rightarrow\left[\begin{array}{lll}
t^{\prime} & n^{\prime} & b^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
t & n & b
\end{array}\right]\left[\begin{array}{ccc}
0 & -D & \square \\
B & 0 & \square \\
-B & -\square & 0
\end{array}\right]
$$

Beccuse $t^{\prime} \cdot n=K$ ond $t^{\prime} \cdot b=0$, this matrix is aotually of the foom

$$
\left[\begin{array}{ccc}
0 & -k & 0 \\
k & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]
$$

sign comention do Carmo

Where τ is a new property, called torsion.
DEn The torsion is $b^{\prime} \cdot n$.
Rume: pitch is k ond roll is τ.

Fand. Them of space corres:
(1) $\forall k>0, \tau$ on $I, \exists \alpha: I \rightarrow \mathbb{R}^{3}$ wl corvatue k, tarsion τ
(2) Sude α is unigne u8 to rigid motions

T(1) Is actually way hardor thon in 20 blc [trb] veed not commente w) $\left[\begin{array}{l}0^{-K} \\ \left.k_{-\tau}-\tau\right]\end{array}\right]$, so you cont wee diagonalise Need Fund. Them. of lineor $z D E \in$ Aride $F^{\prime}=F A$

$$
\alpha=\int t
$$

$$
\Rightarrow F^{\prime} \leq e^{\mu} F_{0}
$$

comploteness then
(2) Liveority if F, \widetilde{F} solve some eqin, define M by $\left.F\left(t_{0}\right)=M \hat{F} k_{0}\right)$

$$
\begin{aligned}
& F^{\prime}=F A=\left[\sum_{-2}^{-\mu}-2\right] \\
& \tilde{F}^{\prime}=\tilde{F A} \quad \widetilde{F}=M F \\
& M^{\prime} F+M F^{\prime}=M F A \Rightarrow M^{\prime} F=0 \Rightarrow M=\text { coust }
\end{aligned}
$$

\Rightarrow difter by (Et multiplication ky (ortwogonal) M
Then

$$
\begin{aligned}
& t=F\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \tilde{t}=M F\left[\begin{array}{l}
1 \\
0
\end{array}\right]=M t
\end{aligned}
$$

lutegrate again $s \tilde{\alpha}=M_{\alpha}+\left[\begin{array}{l}x_{0} \\ x_{0} \\ z_{0}\end{array}\right]$

Now, if $\alpha: I \longrightarrow S \subseteq \mathbb{R}^{3}$ is an ardength-parametrized come on an oriented surface S, the Darboux frame of α is the orthonormal fracking $[T V N]$ where

$$
\begin{aligned}
& T(s)=\alpha^{\prime}(s) \\
& N(s)=N_{\alpha(s)} \\
& V(s)=N(s) \wedge T(s)
\end{aligned}
$$

(See Exercise 4-4.14)

Rules:

- Don't need to assume $k \neq 0$
- (Exercise) A war natural definition is
- $T(S)$ is the unit tangent to trace (α) determined by the ariccutation of α
- $V(s)$ is $T(s)^{\perp}$ in the tongent space of S at $\alpha(s)$, where the meaning of \perp is determined by the orientation of S

- N(s) is T~V (where the connection for \wedge is determined by the oricutation of \mathbb{R}^{3} !)

Since $[T V N]$ is orthonormal, we still have

$$
\left[T^{\prime} V^{\prime} N^{\prime}\right]=[T \cup N]\left[\begin{array}{ccc}
0 & -a & -b \\
a & 0 & -c \\
b & c & 0
\end{array}\right]
$$

for some functions ass), b($(s), c(\delta)$, (see lectures 4.1 oud 4.2) which are now imvorionts up to rigid notion of the pair (x, s).

$$
\left\langle T^{\prime}, T\right\rangle=\frac{1}{2}\left(|T|^{2}\right)^{\prime}=0
$$

Airplane andogy: vow we have a rudder
$D_{n} \cdot\left\langle T^{\prime}, N\right\rangle=b=-\left\langle N^{\prime}, T\right\rangle$ is the normal curvature of α in S. Do Carmo calls this k_{n}.
more on $\left(\cdot\left\langle T^{\prime}, V\right\rangle=a=-\left\langle V^{\prime}, T\right\rangle\right.$ is the geodesic curvature there of α in S.

- $\left\langle V^{\prime}, N\right\rangle=C=-\left\langle N^{\prime}, V\right\rangle$ is the geodesic torsion of α in S.
$\backslash T^{\prime} \backslash$
Prop $k=\sqrt{a^{2}+b^{2}}$

Γ T' is in the plane spanned by V oud N (since α is arc-lengthporanatrized)
and V oud N are arthonarmal, so

$$
K=\left|T^{\prime}\right|=\sqrt{\left\langle T_{,}^{\prime}, U\right\rangle^{2}+\left\langle T^{\prime}, N\right\rangle^{2}}=\sqrt{a^{2}+b^{2}}
$$

The V,N plone:

$$
\xrightarrow{\uparrow}
$$

DIn . If T^{\prime} is porallel to V, α is an asymplatic carve. machwore of S.
later
1 If T^{\prime} is porallel to N, α is a geodesic of S.

- If N^{\prime} is parallel to T, then k is a li.e. $\left.\left(N^{\prime}, v\right)=0\right)$ curvative of S.
(1) $e(T, U, N)$ Frenet
(2) $\Leftrightarrow(T, N,-U)$ Frenet

Margon's preddem:

Tect tarm

cot out of a flat breet.
Whed radius?

$$
\begin{aligned}
& \psi(a)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a \cos u \\
a \\
\sin u \\
h \\
\frac{u}{2 a}
\end{array}\right) \\
& \frac{d \psi}{d u}=\left(\begin{array}{c}
-a \sin u \\
a \operatorname{con} u \\
\frac{u}{2 \pi}
\end{array}\right) \quad \frac{d^{2} \psi}{d u^{2}}=\left(\begin{array}{c}
-a \operatorname{cosu} u \\
-a \operatorname{cisu} u \\
0
\end{array}\right) \\
&\left|\psi^{\prime}\right|=\sqrt{a^{2}+\frac{u^{2}}{2 a}}=: c \\
& L=2 a c=\text { leugtu } \\
& \quad \text { S one sadion }
\end{aligned}
$$

guess: circle of radius $c-6.26 \mathrm{~m}$? too quall

Retter guess?

$$
\begin{aligned}
& s=\frac{u}{c} \\
& \frac{d \psi}{d s}=\frac{d \psi}{d u} \frac{1}{c} \\
& \frac{d^{2} \psi}{d s^{2}}=\frac{d^{2} \psi}{d u^{2}}\left(\frac{d u}{d s}\right)^{2} \\
& k=\frac{a}{c^{2}} \\
& \frac{1}{k} \sim 10.45 \mathrm{~m}
\end{aligned}
$$

Dabroux Frome $=$ Frenet frome

