

Frenet Freuer (1847)
DED IF
$$x: I \rightarrow \mathbb{R}^3$$
 is a curve (paron by corclegeth), letter
 $t(s) = x'(s)$ tongent
 $k(s) = |t_{i}'(s)|$ curvature (coupore signed con)
Accounting $k \neq 0$, letter
 $n(s) = \frac{y''(s)}{k(s)}$ vormal (duede $n \pm t$)
 $b(s) = tan$ binormal (coose product)
 $F = [t n b]$ is the Frenet Frame of a
 R_{b} span(t), n) is the oscillating plane.

V

(on think of
$$F: I \longrightarrow 50(3)$$
 $F^{T}F = id$.
Write $F' = \frac{1}{dE} \in T_{F} 50(3)$ (
 $(F^{T})'F + F^{T}F' = 0 \implies (F^{T}F')^{T} + F^{T}F^{T} = 0$
 $\Longrightarrow F^{T}F'$ is shew-symmetric

$$F'F'$$
:
 $\begin{bmatrix} t & b \end{bmatrix}' = \begin{bmatrix} t & b \end{bmatrix} \begin{bmatrix} 0 & -x & -y \\ x & 0 & -z \end{bmatrix}$

Since the French France is orthonormal,
$$F^T F = I$$
,
 $F'F'$ is shew symmetric

$$\rightarrow$$
 [t' n' b'] = [t n b] $\begin{bmatrix} 0 - 1 \\ 1 \\ 0 \\ -1 \\ -1 \\ 0 \end{bmatrix}$

Because $t' \cdot n = K$ and $t' \cdot b = 0$, this model's is actually as the form $\begin{bmatrix} 0 & -K & 0 \\ K & 0 & 7 \\ 0 & -T & 0 \end{bmatrix}$ sign convertion do Corno

Fund. Thun as space corres:
(D) H K>0,
$$\tau$$
 on I, $\exists x: I \rightarrow R^3$ will converte k, torsion τ
(a) Such at is unique up to rigid motions
T() is actually way harder than in 2D Hz (tons)
wed not commute will $[2^{-n} \tau]$, so you can use diagonalise
Need Fund. Thun, of linear $\tau \partial F = Aride F'=FA$
 $x = \int t$
(a) Linearity IF F, F alue some egin, dotine M by $F(t_0) = MF(k_0)$
 $F'=FA$
 $F=MF(x) = MF(x)$
 $F'=F(Fa)$
 $F'=F(Fa$

Integrate again as $\tilde{x} = M x + \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$

 \Box

Now, if $\alpha: I \rightarrow S \leq \Pi^3$ is an ardength parametrized curve on an oriented surface S, the Darbour France of α is the arthonormal Fracturing [T V N] where $T(G) = \alpha'(G)$ $N(S) = N_{\alpha(S)}$ $N(G) = N(G) \wedge T(G)$

Don't veed to assume N = 0
(Exercise) A more rectived definition 'is
T(G) is the unit tongent to brace(a) determined by the oriendation of a
V(G) is T(G) in the tongent space of S at all, where the meaning of L is determined by the oriendation of S
(NG) is Table or cutation of S
(NG) is Table or cutation of S

Since [TVN] is orthonormal, we still have $[T'VN] = [TVN] \begin{bmatrix} 0 - q - b \\ a & 0 - c \\ b & c & 0 \end{bmatrix}$

For some Functions also, blas, clas, (see ledwes 4.1 and 4.2) which are now invortants up to vigid motion of the pair (x, 5). $(T', T) = \frac{1}{2}(T_1^2)' = 0$

Airpore andogy: vou ve have a rudder

 $\frac{DRN}{NN} \cdot \langle T', N \rangle = b = -\langle N', T \rangle \text{ is the normal curvature}$ of α in β . Do (armo calls this k_n . More on $(\cdot \langle T', V \rangle = \alpha = -\langle V', T \rangle \text{ is the geodesic curvature}$ more on $(\cdot \langle T', V \rangle = \alpha = -\langle V', T \rangle \text{ is the geodesic curvature}$ more on $(\cdot \langle T', V \rangle = \alpha = -\langle V', T \rangle \text{ is the geodesic curvature}$ more on $(\cdot \langle V', N \rangle = \alpha = -\langle V', V \rangle \text{ is the geodesic torsion}$ $(\cdot \langle V', N \rangle = \alpha = -\langle V', V \rangle \text{ is the geodesic torsion}$ $\delta \in \chi \text{ in } \beta$.

_

Moscon's prelden:

carl out at a Rat dreet. Test-toru When reading? $\psi(\omega) = \begin{pmatrix} x \\ y \\ z \\ z \end{pmatrix} = \begin{pmatrix} a & c = y \\ a & c = y \\ h & w \\ h & w \\ 2 & z \\ z & z \\$ 31.5~ $\frac{d\psi}{du} = \begin{pmatrix} -\alpha & \beta & u \\ \alpha & \beta & u \\ \frac{u}{du} & \frac{du}{du} & \frac{$ 141 = Tar -: c L= 2ac = leugty 3.75 m of one section guess: circle of radius c - 6.26 m? too sual Reffer guess? Dation from = Frenet from aquiporic corre $\zeta = \frac{\alpha}{c}$ te-den = te (1- teden) t ly dr 1

(1-rdu)ds

ds

ls= + lo

$$\frac{dr}{ds} = \frac{dr}{du} \frac{du}{c}$$

$$\frac{dr}{ds^2} = \frac{dr}{du^2} \frac{du}{du^2}$$

$$K = \frac{\alpha}{c^2}$$

$$\frac{du}{du^2} = \frac{\alpha}{c^2}$$

$$\frac{du}{du^2} = \frac{\alpha}{c^2}$$